

Sound Sensor 예제 따라하기

예제설명

130

Sound Sensor 는 제어기 DRC 내부의 양쪽에 위치합니다.

왼쪽측면에서 박수를 치고 왼쪽 손을 들고, 오른쪽측면에서 박수를 치면 오른쪽 손을 드는 프로그래밍을 해봅니다.

01 변수 지정

로봇을 동작시킨다는 것은 로봇의 서보 모터를 동작 시킨다는 의미입니다. 서보가 스스로 움직일 수 있는 상태로 값을 지정해주어야 합니다.

Data〉Variable 모듈을 클릭합니다.

02 시작

모듈의 왼쪽 연결선을 Start Point 에 드래그하여 정확 히 도킹을 시킵니다.

03 프로그래밍 시작

모듈과 Start Point 가 정확히 도킹하면 왼쪽과 같이 활성화된 칼라 이미지 모듈로 변합니다. 그럼 프로그래밍이 시작되었다는 의미입니다.

C-like Graphic
sound_new.tsk 🔟
1 void main()
3 SERVO_TorqCtrl[25
4 jog(512, 0, 254, 100)
5 jog(235, 0, 0, 100)
6 jog(235, 0, 1, 100)
7 jog(789, U, 3, 100)
8 jog(789, U, 4, 100)
9 delay(1500)
10 While(true)
12 III. (MPSU_SoundRecognag && MPSU_SoundDir > 1))
14 iog(512,0,0,20)
15 delau(500)
16 iog(235.0.0.40)
17 delay(1500)
18 continue
19 }
20 else

04 전체 프로그래밍

사운드 센서를 이용하여 각각의 모터 동작을 실행 시켜봅니다.

05 C-Like 보기

오른쪽 상단의 Graphic 탭에서 C-like 탭을 클릭하 면 왼쪽과 같은 Task 프로그래밍 화면이 나옵니다. 사운드 센서를 이용한 전체 프로그래밍 화면입니다. C와 유사한 문법 구조를 가지고 있으므로 C 문법 선 행학습 효과도 있습니다.

각 모듈별로 클릭하면 커서가 따라서 움직이므로 모 듈별로 Text로 어떻게 변환하는지 확인할 수 있습 니다.

06 상수 설정

서보 모터를 스스로 움직일 수 있는 상태로 만드는 과정입니다.

Variable Type 을 Constant 로 선택합니다. 속성중에 Constant Value 값을 96 으로 설정합니다. 서보의 TorqControl 레지스터에 96(0x60) 이라는 값 이 들어가면 서보가 움직일 수 있는 상태가 됩니다. 그 값은 Output 커넥터를 통하여 뒤 모듈의 토크값 에 전달합니다.

131

132

07 모든 서보에 적용

앞에서 받은 96 상수값을 모든 서보에 적용하는 과 정입니다.

Variable 〉 Type : Servo RAM을 선택합니다. Servo RAM : TorqCtrl 을 선택합니다. Servo ID : 254 를 선택합니다. 254는 연결되어있는 모든 서보에 적용하겠다는 의미입니다.

08 모든 서보모터 각도 설정

모든 서보모터의 각도를 중앙에 보내는 과정입니다.

Motion > Moter 를 선택합니다.

Mode : Positon 으로 선택합니다. 각도를 조절합니다. Position : 512 로 설정합니다. 512 번은 모터를 중 앙으로 보낸다는 의미입니다

Motor ID : 254 로 설정합니다. 254 는 모든 모터에 적용하겠다는 의미입니다.

Time : 100 으로 설정합니다. 단위는 1당 11.2ms로, 100은 약 1.12초를 의미합니다.

1.12초동안 원하는 각도로 이동시킨다는 의미입니다.

09 모터 0번 (오른쪽 어깨) 설정

차려자세(기본자세) 만들기

모든 로봇의 모터의 각도를 중앙으로 정렬하면 휴머 노이드에서는 팔을 좌우로 뻗게됩니다. 이것을 차려 자세로 되돌려 놓아야만 기본 자세를 유지하여 동작 시키기가 용이해집니다.

Motion〉Moter 를 선택합니다.

Mode : Position 으로 선택합니다.

Position : 235 로 설정합니다. 235 는 수평으로 들 고 있던 오른손을 수직으로 내려갈 수 있게 모터를 돌리게 됩니다.

Motor ID : 0 으로 설정합니다. 오른쪽 어깨 모터 ID 가 0번입니다.

Time : 100 으로 설정합니다. 약 1.12초동안 원하는 각도로 이동합니다.

10 모터 1번 (오른쪽 팔) 설정

Mode : Postion 으로 선택합니다. Position : 235 로 선택합니다. 235는 수평으로 되어 있던 팔을 수직으로 내리게 됩니다. Motor ID : 1 로 설정합니다. 오른쪽 위쪽 팔 어깨와 닿는 모터가 1번 모터입니다. Time : 100 으로 설정합니다. 약 1.12초동안 원하는 각도로 이동합니다.

11 모터 3번(왼쪽 어깨) 설정

Mode : Position 으로 선택합니다.

Position : 789 로 설정합니다. 789 는 수평으로 들 고 있던 왼손을 수직으로 내려갈 수 있게 모터를 돌 리게 됩니다.

Motor ID : 3 으로 설정합니다. 왼쪽 어깨모터 ID가 3번입니다.

Time : 100 으로 설정합니다. 약 1.12초동안 원하는 각도로 이동합니다.

12 모터 4번(왼쪽 팔) 설정

Mode : Postion 으로 선택합니다. Position : 789 로 선택합니다. 789 는 수평으로 되어 있던 팔을 수직으로 내리게 됩니다. Motor ID : 4 로 설정합니다. 왼쪽 위쪽팔 어깨와 닿 는 모터가 4번 모터입니다.

Time : 100 으로 설정합니다. 약 1.12초동안 원하는 각도로 이동합니다.

133

13 Delay 지연시키기

로봇이 차려자세가 되기까지 기다린 후에 다음 모듈 을 실행시키기 위해 잠시 지연하기 위한 과정입니다.

Flow > Delay 모듈을 선택합니다. Time : 1.5 로 설정합니다. 여기에서 단위는 초입니 다. 약 1.5초동안 Delay 시킵니다.

14 Loop 반복문

Flow > Loop 모듈을 선택합니다. Condition 은 Forever 를 선택합니다. 무한루프로 돌 립니다.

34

15 Sound Sensor

Sensor > Sound Sensor 모듈을 선택합니다. Compare : > 를 선택합니다. 어떤 값보다 클 때를 의미합니다.

Value : 0 으로 설정합니다. 소리의 방향은 -2 에서 2까지 이며 음수는 왼쪽에서 소리가 났음을, 양수는 오른쪽에서 소리가 났음을 의미합니다.

0보다 크다는 것은 오른쪽에서 소리가 들어왔음을 의미합니다. 소리가 났으며 소리의 방향이 오른쪽이 면 Output이 True가 되고, 아니면 False가 됩니다.

16 Switch IF 분기문

앞의 값이 True 이거나 False 일때 각각에 해당하는 결과를 실행합니다. 오른쪽에서 소리가 났으면 True, 그렇지 않으면 False 입니다.

17 모터 1번(팔) 설정

소리가 오른쪽에서 났으면 True 로 팔을 올립니다.

Motion 〉 Moter 를 선택합니다. Mode : Position 으로 선택합니다. Position : 700 으로 설정합니다. 700 은 수직 차려자 세로 놓여있는 팔을 옆으로 올리게 됩니다. Motor ID : 1 로 설정합니다. 오른쪽 팔 모터 ID가 1 번입니다. Time : 20 으로 설정합니다.

18 모터 1번(팔) 설정

소리가 나지 않았거나, 오른쪽외의 방향에서 났으면 False 로 현재 내려져 있는 팔 상태를 유지합니다.

Motion > Moter 를 선택합니다.

Mode : Position 으로 선택합니다.

Position : 235 으로 설정합니다. 235 는 수직 차려자세를 유 지합니다. 팔이 올라가 있어다면 차려자세로 내려옵니다. Motor ID : 1 로 설정합니다. 오른쪽 팔 모터 ID가 1번입니다. Time : 40 으로 설정합니다. 올라간 속도보다 좀 더 느리게 내려옵니다.

135

19 Sound Sensor

Sensor > Sound Sensor 모듈을 선택합니다. Compare : < 를 선택합니다. 어떤 값보다 크기가 작 을 때를 의미합니다.

Value : 0 으로 설정합니다. 소리의 크기는 -2 에서 2까지 이며 음수는 왼쪽, 양수는 오른쪽을 의미합니 다. 0 보다 작다는 것은 왼쪽에서 소리가 들어있음 을 의미합니다. 소리가 났으며 소리의 방향이 왼쪽인 경우 Output이 True가 되고, 아니면 False가 됩니다.

20 Switch IF 분기문

앞의 값이 True 이거나 False 일때 각각에 해당하는 결과를 실행합니다. 왼쪽에서 소리가 났으면 True, 그렇지 않으면 False 입니다.

36

21 모터 4번(팔) 설정

소리가 왼쪽에서 났으면 True 로 왼팔을 올립니다.

Motion 〉 Moter 를 선택합니다. Mode : Position 으로 선택합니다. Position : 324 으로 설정합니다. 324 는 수직 차려자 세로 놓여있는 팔을 옆으로 올리게 됩니다. Motor ID : 4 로 설정합니다. 왼쪽 팔 모터 ID가 4번입니다. Time : 20 으로 설정합니다.

22 모터 4번(팔) 설정

소리가 나지 않았거나, 왼쪽 외의 방향에서 났으면 면 False 로 현재 내려져 있는 팔 상태를 유지합니다. Motion > Moter 를 선택합니다.

Mode : Position 으로 선택합니다.

Position : 789 로 설정합니다. 789 는 수직 차려자 세를 유지합니다. 팔이 올라가 있었다면 차려자세로 내려옵니다.

Motor ID : 4 로 설정합니다. 오른쪽 팔 모터 ID가 4 번입니다.

Time : 40 으로 설정합니다. 올라간 속도보다. 좀 더 느리게 내려옵니다.

23 컴파일, 다운로드, 실행

왼쪽 클릭하여 컴파일 시킵니다. 에러가 없으면 오른 쪽 클릭하여 로봇에 다운로드 시킵니다. 다운로드 완 료되면 가운데 화살표 실행버튼을 눌러 로봇에서 실 행시킵니다.

24 로봇동작

로봇 오른쪽에서 박수치면 오른쪽 팔을 올리고, 로봇 왼쪽에서 박수치면 왼쪽 팔을 올립니다.